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Abstract

The current one-stream tracking framework has received far-reaching
attention for its significant improvement in tracking performance,
yet it is essentially an extension of Siamese trackers. However, the
one-stream framework of discriminative trackers has not been ef-
fectively exploited, still using separate feature extraction and model
prediction. Therefore, this article aims to implement a one-stream
learning strategy for feature extraction and model prediction un-
der the discriminative tracking framework. To this end, we have
leveraged the prevailing Vision Transformer and Vision Mamba
backbones to achieve our motivation. Moreover, we innovatively
combine templates with discriminative tracking methods to en-
hance the ability of target-aware feature learning, and further pro-
pose the attention fusion module to implement spatiotemporal
template fusion, which can enhance the adaptability of the tracking
model to dynamic changes of targets. The experiments on multiple
popular tracking benchmarks have demonstrated that our proposed
tracking architecture has superior tracking performance. Concisely,
our tracker obtains an AUC of 73.3% on LaSOT dataset, and an AO
of 78.2% on GOT-10k dataset. The code, raw results, and trained
models are available at https://github.com/hexdjx/VisTrack.
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Figure 1: Simplified illustration of our proposed framework,
which is a novel and concise one-stream discriminative track-
ing compared to the two-stream discriminative methods.

1 Introduction

Visual object tracking is the process of tracking a specific object in
a video, with only the first frame of the target state provided, the
characteristic of which is that the tracked object is single target and
its category is agnostic. In the past decade, discriminative filters
and Siamese networks [22] have led the development of visual
object tracking. Due to the complexity of tracking scenarios, object
tracking remains active at the forefront of research.
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With the development of deep learning, mainly Convolutional
Neural Network (CNN) [20] and Vision Transformer (ViT) [11], the
tracking performances of discriminative trackers [2, 30, 36, 45] and
Siamese trackers [7, 24, 43] have been greatly improved. Siamese
trackers can be divided into feature extraction, feature fusion, and
prediction head. In the beginning, CNN is used as the feature ex-
tractor, and correlation operations [24] are used to fuse template
and search region features to find the most similar targets. How-
ever, template features are generally unchanged during the tracking
process. Nowadays, some works[6, 9, 44] adopt ViT backbone to
perform joint feature extraction and feature fusion learning, which
is called a one-stream tracking pipeline. Especially, anchor-based
or anchor-free prediction heads [9, 24] also provide support for the
improvement of tracking performance.

The Siamese trackers mentioned above use template matching
to find the most similar target object from the search region, and
its template contains little target information while discriminative
trackers [2, 30] are intended to train a discriminative model pre-
diction to recognize the real target from background information,
especially excellent DiMP [2] and ToMP [30] acquire the Discrimi-
native Correlation Filter (DCF) target model in end-to-end training.
DCF-based trackers have been developed for many years and have
achieved promising results [22], and some discriminative trackers
(e.g., TrDiMP [36], DTT [45], and ToMP [30]) have already adopted
the Transformer structure for learning the discriminative target
model. However, their current tracking performance is largely sur-
passed by Siamese trackers using one stream Transformer frame-
work. Therefore, we have identified two important reasons from
the analysis of TOMP and existing one-stream Siamese trackers. (1)
Feature representation: the existing ToMP still uses ResNet as the
backbone for feature extraction, and its expression ability is not as
good as that of the ViT backbone. Moreover, using pre-trained net-
work features is not as good as training on object tracking datasets
(e.g., LaSOT [13], TrackingNet [32], and GOT-10k [21]). These two
aspects greatly improve the performance of Siamese trackers on
these tracking datasets. (2) Online model update: online model
update has always been a standard component of DCF trackers,
which effectively utilizes changing target information to maintain
robust tracking. Nowadays, Siamese-Transformer trackers use a
score prediction head [9, 14, 43] to attach the dynamic template,
and implement feature interaction under the Transformer archi-
tecture, greatly improving the disadvantage of fixed templates in
early Siamese trackers. Some works [42, 46] use video clips to con-
struct a token propagation mechanism. Therefore, it is necessary to
properly judge the prediction results to update the target template.

Transformer-based trackers have been developed in recent years
and have achieved promising results, their current tracking per-
formance is largely attributed to the learning ability of the Trans-
former. Especially, one-stream Siamese tracking framework fully
realizes efficient feature extraction and sufficient feature fusion.
Moreover, replacing ViT backbone with Vision Mamba([47] has also
been used in the Siamese tracking framework [25, 37]. According
to the current survey, one-stream [6, 9, 44] and two-stream [7, 43]
tracking frameworks using the Siamese paradigm have been de-
veloped, while there is no one-stream method proposed for the
discriminative tracking framework. As is shown in Figure 1, this
paper innovatively proposes a one-stream discriminative tracking
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framework. Our approaches demonstrate competing performances
on eight challenging benchmarks [12, 13, 21, 23, 31, 32, 38, 41].

In summary, our contributions are as follows: (1) We propose a
novel and concise one-stream discriminative tracking architecture,
which uses our devised target model prediction module and joint
learning backbone to realize the integration of feature extraction
and discriminative model prediction. (2) We introduce the Vision
Transformer block and Vision Mamba block to construct a one-
stream discriminative joint learning backbone. (3) We construct a
target model prediction based the given bounding box to encode the
discriminative features and propose a target template to enhance
the acquisition of target-aware features. (4) Comprehensive ablative
studies and comparative experiments are implemented on eight
fashionable tracking benchmarks to verify the feasibility of our
tracking framework.

2 Related Work

At present, most visual object tracking algorithms are implemented
using deep learning architectures. Based on the taxonomy of this
review [22], we mainly provide an overview of Siamese and dis-
criminative tracking.

2.1 Siamese Tracking

Since its inception, Siamese trackers have been using learnable
methods to learn target features. TransT [7] constructed a Trans-
former fusion module to integrate template and search branch
features, and STARK [43] introduced a dynamic template to further
enhance the effect of feature fusion. AiATrack [15] and CSWinTT
[35] improved Transformer attention mechanism to enhance fea-
ture correlation ability. SimTrack [6] and OSTrack [44] formulated
an innovative one-stream framework, which does not require a
CNN feature backbone, but only uses ViT [11] to construct joint
feature extraction and fusion to achieve more efficient interaction
between the template and the search area. MixFormer [9] used ViT
and CVT [40] (which is a variant of ViT) to jointly learn feature
extraction and fusion. Similarly, it also proposed a score predic-
tion module to update dynamic templates. GRM [16] proposed a
token division module and attention masking strategy to improve
one-stream Transformer tracking. ROMTrack [5] proposed a novel
modeling method to model the inherent template and the hybrid
template features simultaneously. HIPTrack [4] utilized historical
locations and visual features to generate historical cues to enhance
tracking performance. Moreover, a learnable query token [42, 46]
and Vision Mamba backbone [25, 37] is adopted for constructing
target context-aware learning.

2.2 Discriminative Tracking

Before deep learning, DCF has always been a hot topic for visual
tracking. The proposal of DCF tracker [3] was several years earlier
than that of Siamese tracker [1], and DCF trackers [10, 30] have
undergone the evolution of manual features, CNN, and Transformer
features. DCFs are a discriminative tracking method, which aim to
distinguish the foreground target from the background region, but
unlike Siamese tracking, they have a completely trainable tracking
architecture. Therefore, DiMP [2] was the first learnable deep ar-
chitecture to adopt the DCF paradigm, which was comparable to or
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Figure 2: Overview of our one-stream discriminative Transformer tracking. Our approach constructs a joint backbone block
with target model prediction to learn mixed tokens, and uses the discriminative prediction head to output the new target state.

even better than the Siamese tracker. TrDiMP [36] is the first Trans-
former tracker improved based on DiMP. DTT [45] proposed an
encoder-decoder Transformer architecture to replace the optimized-
based model predictor in DiMP. Recently, ToMP [30] proposed a
Transformer model predictor to replace the optimized-based model
predictor of DiMP, which can utilize Transformer to achieve in-
teraction between training frames and test frames. In particular,
DiMP uses data augmentation and a larger sample memory to store
reliable samples to optimize the DCF target model, while ToMP
employs a fixed initial training frame and dynamic training frame
to achieve online tracking.

Summay: Whether it is discriminative or Siamese trackers, they
can no longer do without the help of Transformers. The Siamese
trackers adopt the template matching method and use the input
description of the template and the search region. The template has
a small amount of background information and is twice as small as
the search region. The discriminative tracking adopts the concept
of DCF to construct a discriminative target model that can output
Gaussian response maps. This method uses input description of
training frames and test frame, with the same resolution and back-
ground region in the training frames, aiming to learn discriminative
target models. However, due to the lack of a one-stream tracking
architecture, there is a significant performance gap between current
discriminative tracking and one-stream Siamese tracking. This is
the primary motivation behind the content of this paper.

3 Our Approach
3.1 Overview

The method in this paper aims to propose a one-stream discrimina-
tive tracking framework, which is mainly based on the two-stream
discriminative ToMP tracker. As is displayed in Figure 2, we pro-
pose a joint model prediction backbone to realize joint learning of

feature extraction and discriminative model prediction. Unlike the
model prediction scheme implemented by ToMP using feature ex-
traction first and then Transformer model prediction, our method
is concise and completely uses the joint learning backbone, the
function of which is to convert RGB images from training and test
frames into deep features. Additionally, we refer to the practice of
target state embedding from ToMP and propose a target template
to construct the target model prediction for supervising the dis-
criminative learning. Subsequently, we obtain the response map
and Itrb expression using a prediction head that consists of a target
classifier and a bounding box regressor, respectively. Finally, we
select and transform the ltrb expression into the target state of the
test frame by using the peak coordinates of the response map. To
ensure the correct updating of the dynamic training frame (the
image on the right side of the training frames in Figure 2), we only
use the peak value of the response map to determine whether to
update the dynamic training frame online.

3.2 Joint Feature Learning Backbone

This paper integrates the one-stream idea into the discriminative
tracking framework and proposes a pure ViT and Vim backbone
with a target model prediction to encode mixed tokens. Our track-
ers use the configuration of one-stream backbone and prediction
head. Unlike one-stream Siamese tracking framework, our trackers
belong to a one-stream discriminative tracker. As is displayed in Fig-
ure 2, the input branches include training frames x;, € RTXHXWx3
and test frame x;, € REXW>3 T represents the number of training
frames, and we can see that the image resolution of the training and
testing frames is the same. Then, the training and test image frames
are passed through the patch embedding PE to extract training
and test tokens. The patch embedding PE is aimed at converting

RGB images into token features, that is [ei’,r, e‘f,"’] = PE ([x4r, Xte]).
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Figure 3: Illustration of Vision Transformer (ViT) block and
Vision Mamba (Vim) block. We have implemented the con-
struction of a joint feature learning backbone using ViT and
Vim blocks, respectively.

Specifically, we adopt the target model prediction M to obtain
Gaussian classification token e, ltrb regression token e;, and target
template token e; based on bounding boxes from training frames,
these e. and ¢; tokens are utilized to supervise the training of tar-
get classifier and bounding box regressor. While the e; is used for
generating enhanced target-aware features. To condense discrimi-
native foreground target features from the training and test frames,
we additionally attach a learnable foreground target token ef to
constitute the mixed tokens ep;y = [ef, e, ef,’ De. D ey, e;f].

Moreover, this foreground target token ey is also used for en-
coding Gaussian classification labels. Immediately after, we pass
through Nx joint backbone blocks to achieve joint feature learning
between the foreground target, target template, training and test
tokens. We use two prevailing architectures, ViT [11] and Vim [47],
to implement the joint backbone block. Here, ViT adopts the Trans-
former architecture with quadratic complexity, while Vim adopts
the Mamba architecture with linear complexity.

Vision Transformer Block. The structure of Transformer block
is provided in Figure 3a, which uses the same structure as ViT
[11]. The Transformer block mainly includes multi-head attention
(MHALtt), layer normalization (LN), multi-layer perceptron (MLP),
and residual connection. The Nx Transformer blocks can be formu-
lated as follows:

20 = emix © Epos, Epos € R<L+1)XD,

28 =z, + MHAtt (LN (zp-1)), n=1...N,

2P = 2% ¢ MLP (LN (z2)), W
ecne =LN( . )

mix ZN

Here, E,s is Sinusoidal Position Embedding used in Transformer.
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Vision Mamba Block. Vim [47] proposed a novel vision back-
bone that utilizes bidirectional Mamba [17] blocks to learn visual
representation. As shown in Figure 3b, the summation of mixed
tokens eix and position encoding E,o; is first normalized and then
passed through two diverse linear layers to obtain x and z. The core
of Vim adopts the Conv1d and the state space model (SSM) module
implemented by Mamba to construct a bidirectional Mamba block,
which also uses layer normalization (LN), the activation function &
denotes SiLU, and element-wise product and addition, as well as
residual connection to implement feature encoding. The Nx Vision
Mamba blocks can be formulated as follows:

Z) = emix © Epos: Epos € R(L+1)XD,

x = Linear” (LN (z,-1)),n = 1...N,
z = Linear® (LN (zp-1)),
Xo = SSM, (8 (Convld, (x))),0 € [forward, backward],

zn = Linear ((xforward ®4 (Z)) ® (Xpackward ® 0 (Z))) D zp-1,
ecs. =LN (zn) .
@)
Ultimately, we split the mixed tokens efS. encoded by joint
backbone blocks into the foreground target token e%" and test
token ef’°, which is reshaped the required dimension and inputted
into the target classifier and bounding box regressor to predict
response map and [trb regression map, these maps are utilized to

yield the new target state.

3.3 Target Model Prediction
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Figure 4: Structure of Target Model Prediction. The patch
embedding is a convolution module with a kernel and stride
of 16. For training frames, the Gauss label and Itrb encoding
modules are utilized to acquire the supervised tokens based
on bounding boxes, which are attached to patch embedding
features as training tokens. Moreover, we adopt RoIAlign
[33] to crop the target region as the target template token.

The previous section has introduced the one-stream joint feature
learning backbone. This section mainly displays the target model
prediction and analyzes how training and template tokens are gen-
erated. As is depicted in Figure 4, the training token is composed of
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patch embedding, Gauss label, and Itrb regression features, while
the template token is directly obtained from the patch embedding
features. The output of these modules has undergone a 16-fold down
sampling operation. Take initial image frame x;,, € R3*%88x288 54
an example, we first use patch embedding module to obtain image
patch token, as follows:

ep =y (PE (xim)) , ¢p € R¥P765, ®)

Here, PE denotes the patch embedding module, y denotes the re-
shape operation. Gauss label and Itrb encoding demand the given
target bounding box [x, y, w, k], the bounding box is converted to
obtain Itrb regression map I, and Gaussian classification label y,.
The Itrb distance map I, is mapped by an MLP layer ¢ to get a
Itrb token e; = y (¥ (I,)). The Gaussian classification label y, is
element-wise multiplied by the foreground target token e to yield
a Gauss label token e; =y (y. ® es). Finally, we integrate Itrb and
Gaussian label token into the feature token through element-wise
addition to supervise the learning of the training frame feature.
Attentively, the test frame features only include the feature token,

as follows:
e = elt,r ® e D e,

re ©

ere = €.

In order to integrate the concept of Siamese templates, we add a
target template to enhance feature perception ability. The difference
is that our target template is limited to the target region and is
obtained from the feature maps instead of the input template image.
This seems to be the integration method of Siamese tracking and
discriminative tracking. The training frame already contains a larger
background region, and Gaussian labels and Itrb regression maps
serve as discriminative supervision, while the template token is
designed to make feature learning more focused. Concisely, we use
a RoIAlign [33] operation to achieve our goal, as follows:

e; = RolAlign (PE (Xinm), [x,y, w, h]) . (5)

3.4 Target Classifier and Bounding Box
Regressor

Above, we have introduced the structure of joint feature learning
backbone and target model prediction. To simplify, we call the
joint feature learning backbone as the joint backbone encoder B,
which is shown in Figure 5. Through the target model prediction,
we obtain the target, template, training and test tokens, a joint
backbone encoder is used to realize the joint feature extraction and
interaction between these features [ey, e;, eir, efr, ese], as follows:

i enc i
e e5™, [ef. efr] ,efé’c]=f8enc([ef,et,eér,efr,eze])- (6)

Here, ! and e? express the initial training token and dynamic
training token separately. Subsequently, eji”” and e{7¢ is shared to
target classifier and bounding box regressor. The encoded fore-
ground target token e and the test features e} pass through the

target classifier module to predict the response map, as follows:

R =ftzenc * W, teenc e R768><18><18 w e R768X1X1.

s g = )
Here, * denotes the convolution operation. In the bounding box
regressor, the foreground target weight w is first preprocessed by

@)
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Figure 5: Structure of Target Classifier, Bounding Box Regres-
sor, and Target Template Fusion. The input embedding of the
joint backbone encoder is the mixed tokens of foreground
target token, target template token, initial training token,
dynamic training token, and test token. The content of target
template fusion will be introduced in Section 3.5.

the linear layer ¢, and then convoluted with the test features £, to
obtain a single channel attention map fy;, The attention map f4;;
and the test features £ is fused by the element-wise product, and

next input into Fully Convolutional Network (FCN ¢) to acquire a
Itrb feature map, as follows:

[Ltrb]l=¢ ( e ®ﬁztt) .
st farr = ;77 % L (w)
Finally, we select and transform (i.e., s7) the ltrb expression into the

target state of the test frame by using the peak coordinate of the
response map, as follows:

®)

[xreg, Yreg> W5 h] =st([Lt,r,b], [xcis Yeis]) - )
s.t. [Xets, Yes] = arg max (R)

In the training stage, we employ the target classification loss
from DiMP [2] as supervision of the response map, and L1 and
GIOU [34] loss from STARK [43] to supervise the bounding box
prediction, as follows:

Liotal = ActsLeis (gm yC) +

/111~£ll (l_rs lr) + AgiouLgicu (l_ra lr) .
Here, {*} denotes the ground truth and {*} denotes the predicted re-
sult. The generation of y. and I, refers to the approach of ToMP[30].

L is the target classification loss, while £;; and Lo, are the
bounding box regression loss. We set Ac;s = 100, Ay = 5, Agiou = 2.

(10)

3.5 Online Token Update

During online tracking framework, we use annotated initial frame
and subsequent predicted frame as our training frames. Especially,
the initial frame remains unchanged, and the predicted frame is dy-
namically changing, the quality of dynamic training frame updates
affects the effectiveness of online tracking. As shown in Figure 5,
the response map R can be obtained through the target classifier
module. To evade introducing additional branches and two-stage
training like MixFormer and STARK [9, 43], refer to the practice of
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discrimination tracking [2, 30], and directly determine whether to
update the dynamic training token efr according to the peak value
RPe of the response map. Normally, the predicted response map
approximates the Gaussian classification label. The peak value of
the response map not only indicates the location of the tracking,
but also indicates the reliability of the position determination. To
be concise, we only use the max score of the response map as the
updated standard of the dynamic training sample. Since the training
sample contains specific bounding box information, it can only be
updated by replacement, as follows:

e = [e;r, egr] , frame =1,

{ err = [el,,ed ], RPEK > 9. (11)
Here, 0 is an update threshold, which is set 0.95 by default. e/,
denotes the initial frame token, e? denotes the dynamic training
token when RP¢% > .

At first, the target template is obtained using a fixed initial train-
ing frame. In order to add the target template of dynamic training
frames, but not to enhance the length of the mixed tokens, we
propose a target template fusion with spatial attention method to
achieve this function, which is shown in Figure 5. This template
fusion method uses a spatial attention block SAtt (as shown at the
right sub-figure of Figure 5 to obtain the spatial attention map for
adaptive attention-weighted fusion. We perform the element-wise
product and addition between the spatial attention map and the
initial template token e/, as well as the dynamic template token e?,
to realize adaptive template fusion. Furthermore, we adopt Softmax
function to normalize the attention weight map to make the weight
coefficient on the fusion map position meet the sum of 1, as follows:

(wi, wa) = Sof t max (cat (SAtt (ef), SAt (ef )
(12)

fusion

el =(wi®e§)@(wd®e§’).

4 Experiments

4.1 Implementation Details

We train our tracker on the training splits of the LaSOT [13], Track-
ingNet [32], GOT-10k [21], and COCO2017 [28] datasets. We use
pre-trained MAE [18] ViT-base and the base version Vim [47] with
pre-trained weights with a patch size of 16 to initialize the net-
work parameters of the joint backbone block. We sample 60k sub-
sequences and train for 300 epochs on 4 NVIDIA GeForce RTX
2080ti GPUs 22G. Specifically, our image patch size is 288, the
search scale factor is 5, and AdamW [29] optimizer is adopted. The
learning rate of AdamW is 1e-4, but that of backbone is 2e-5, and
we decay by a factor of 0.2 after 150 and 250 epochs and weight
decay of 1e-4. We construct a training sub-sequence by randomly
sampling two training frames and a test frame with a 200-frame
interval within a video sequence. We then extract the image patches
after randomly translating and scaling the image relative to the
target bounding box. Moreover, we use random image flipping and
color jittering for data augmentation.

To verify the practicability of our proposed one-stream discrimi-
native tracking framework and online tracking method, we show
comparative performances on eight challenging benchmarks in-
cluding LaSOT [13], LaSOText [12], TrackingNet [32], GOT-10k
[21], OTB100 [41], NFS [23], UAV123 [31], and TNL2K [38]. Our
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approach is implemented in Python using PyTorch, and all test
experiments are running in the GPU processor of GeForce RTX
4070.

4.2 Comparison to the State of the Art

We exploit a novel one-stream discriminative tracker including a
joint feature learning backbone, target model prediction, prediction
head, and online update strategy, to construct a high-performance
Joint Discriminative Tracking framework, hence it is called the
JDTrack tracker. JDTrack updates the training and template tokens
online by default, including JDTrack-ViT and JDTrack-Vim, using
ViT-B and Vim-B structure with pre-trained parameters respectively.
In this section, we compare our proposed JDTrack-ViT and JDTrack-
Vim trackers with the State of the Art (SOTA) trackers on eight
challenging tracking benchmarks.

LaSOT [13]: Table 1 shows the comparison results in terms of
Precision, Normalized Precision and AUC scores for various track-
ers. Our proposed one-stream discriminative tracking pipeline and
online update modules can enhance the discriminative ability of the
target features. Recent DiMP [2], TransT [7], STARK [43], ToMP50
[30], OSTrack [44], MixFormer [9], SwinTrack [27], AQATrack [42],
LoRAT [26], and HIPTrack [4] are considered for comparison. Our
proposed JDTrack-ViT achieves competitive performance, outper-
forming ToMP50 with a relative gain of 5.7 %. Overall, the proposed
methods have significantly improved tracking performances.

LaSOText [12]: LaSOText is an extended subset of LaSOT that
includes 150 additional videos with 15 new categories. As shown in
Table 1, Our JDTrack-ViT with 288 image size tracker achieved an
AUC score basically similar to that of LoORAT-B [26], and we can
observe our JDTrack-ViT outperforms OSTrack and ARTrack by
3.0 % and 4.0% AUC score. Compared with ToMP50, we can see that
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Table 1: Analysis of our JDTrack-ViT/Vim compared with SOTA trackers on the LaSOT, LaSOText, TrackingNet, and GOT-10k
datasets. Therein, the evaluation metrics include Precision (P), Normalized Precision (NP), Area Under the Curve (AUC),
Success Rate (SR), and Average Overlap (AO) (%). The two best results are highlighted in bold red and blue.

Trackers Source LaSOT LaSOText TrackingNet GOT-10k
AUC NP P AUC NP P AUC NP P AO  SR0.5 SR0.75
DiMP[2] ICCV2019 569 650 56.7 39.2 476 451 740 80.1 687 61.1 717 49.2
TrDiMP[36] CVPR2021 63.9 730 66.3 - - - 784 833 731 671 777 58.3
TransT[7] CVPR2021 649 738 69.0 - - - 814 867 803 671 768 60.9
DTT[45] ICCV2021 60.1 - - - - - 79.6 8.0 789 689 79.8 62.2
STARK[43] ICCV2021 67.1 769 722 - - - 82.0 869 - 68.8 78.1 64.1
ToMP50[30] CVPR2022 67.6 780 722 467 57.2 530 812 86.2 786 720 837 66.2
MixFormer1k[8] CVPR2022 679 773 739 - - - 826 877 812 732 832 70.2
SwinTrack-B[27] | NIPS2022 71.3 - 76.5 49.1 - 55.6 84.0 - 828 724 805 67.8
OSTrack256[44] ECCV2022 69.1 787 752 474 573 533 831 878 820 71.0 804 68.2
TATrack-B[19] AAAT2023 694 782 741 - - - 835 883 818 773 87.8 74.1
ROMTrack([5] ICCV2023 69.3 788 756 489 593 550 83.6 884 827 729 829 70.2
ARTrack256[39] CVPR2023 704 795 76.6 464 523 84.2 887 835 735 822 70.9
GRM][16] CVPR2023 69.9 780 75.8 - - - 84.0 887 833 734 829 70.4
UTrack256[14] ACMMM2023 | 70.3 80.1 77.1 - - - 833 89.3 843 755 864 74.3
MixCVT[9] TPAMI2024 69.1 78.7 747 - - - 83.1 881 816 726 822 68.8
LoRAT-B[26] ECCV2024 71.7 809 773 503 616 571 835 879 821 721 818 70.7
HIPTrack[4] CVPR2024 72.7 829 79.5 530 643 60.6 845 89.1 838 774 88.0 74.5
AQATrack256[42] | CVPR2024 714 819 786 51.2 62.2 589 838 88.6 831 738 832 72.1
JDTrack-Vim Ours 68.2 773 731 473 57.6 533 828 87.7 812 728 833 69.5
JDTrack-ViT Ours 73.3 827 79.2 504 60.7 57.5 84.0 87.7 832 78.2 87.8 78.1
our JDTrack-ViT/Vim promotes the TOMP50 with a relative AUC Table 2: Comparison results of our JDTrack compared with
gain of 3.7/0.6 (%). state-of-the-art trackers on the OTB100, NFS, UAV123, and
TrackingNet [32]: The experimental results are provided in TNL2K datasets in terms of AUC score.
Table 1. Our ]DTrack—ViT/Vi.m tracker achieves AUC scores of OTB100 NFS UAV123 TNL2K
84.0/82.8 (%), our JDTrack-ViT outperforms the state-of-the-art -
trackers such as MixFormer, OSTrack, LORAT-B, AQATrack, etc. DiMP 68.4 62.0 65.4 -
Compared with ToMP50, we can see that our JDTrack-ViT/Vim TrDiMP 71.1 66.5 67.5 -
promote the ToMP50 with a relative AUC gain of 2.8/1.6 (%). The TransT 69.4 65.7 69.1 -
competitive results on this dataset further demonstrate the effec- STARK 68.1 66.2 68.2 -
tiveness of our proposed approach. ToMP50 70.1 66.9 69.0 54.1
GOT-10k [21]: We use the test set of GOT-10k to test our tracker. MixFormerik ) ) 68.7 )
As shown in Table 1. Our JDTrack-ViT obtains an AO score of 78.2%, ’
surpassing all comparison methods. Moreover, our JDTrack-Vim OSTrack256 - 64.7 68.3 54.3
outperforms the ToMP50 with a relative AO gain of 0.8%. The ARTrack256 - 64.3 67.7 57.5
experiment further demonstrates that our JDTrack is feasible. ROMTrack 71.4 68.0 - -
TNLTK [31‘8], l{1A1V123 [311],(11\1FS [23], (}?TBlO}(: [14111]: TNL21§ is UTrack256 71.8 _ _ 57.5
a recently released large-scale dataset with 700 challenging video .
sequenceys. Since there;g is no original result of ToMP50 in gI‘NLZK MixCVT 700 ) 704 )
dataset, we also test the TNL2K results of ToMP50. As shown in AQATrack256 - - 70.7 57.8
Table 2, our JDTrack-ViT achieves an AUC score of 58.8% on TNL2K HIPTrack 71.0 68.1 70.5 -
dataset, with a relative gain of 4.7%. Moreover, our JDTrack-ViT JDTrack-Vim 69.7 68.3 69.7 56.0
achieves an AUC score of 71.3/71.0 (%) on OTB100/NFS datasets, JDTrack-ViT 71.3 67.3 71.0 58.8

which obtains superior performance compared with most SOTA
approaches. Especially, our JDTrack-Vim achieves the best AUC
results on NFS dataset, surpassing ToMP50 with a 1.4% gain.
Summary: From the comparison of the results in Tables 1 and 2,
we have noticed that using ViT to construct a joint feature learning
backbone is more effective than Vim. In order to have a clearer

visualization of various challenging attributes, we provide radar
comparison diagram of each attribute on LaSOT dataset. As in
revealed in Figure 6, our JDTrack-ViT tracker has improved all
12 tracking attributes except for partial/full occlusion, which is
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lower than HIPTrack. This is particularly prominent in scenarios
such as fast motion, background clutter, and low resolution. The
experimental results from eight popular tracking data show that
our proposed tracking framework has strong superiority.

4.3 Ablation Analysis

To demonstrate the effectiveness of our proposed approaches, we
perform synthetical ablation studies on all test datasets.

Joint ViT and Vim Block: Our proposed tracking framework
is one-stream discriminative tracking pipeline, which is inspired by
one-stream Siamese tracking (e.g., OSTrack [44]) and two-stream
discriminative tracking methods (e.g., TOMP [30]). Like OSTrack, we
use ViT [11] to realize the joint learning of feature extraction and
discriminative model prediction. Furthermore, we introduce Vim
[47] to implement the joint backbone design. Our baseline method
is ToMP, which includes two versions of ToOMP using ResNet50 and
ResNet101. During actual testing, we found that the ResNet50 has
better performance, so we choose ToMP50 as a baseline. We first
replace ResNet50 with ViT-base/Vim-base to test ViT/Vim backbone
feature extraction ability. As shown in Table 3, the experiment
indicates that using only ViT/Vim to extract features is not as good
as ResNet50, and the strong feature interaction ability of ViT/Vim
cannot be reflected simply as the extraction backbone.

Table 3: Analysis of using ResNet50 and ViT-B/Vim-B back-
bone and their impacts on the baseline tracker in terms of
AUC score.

ResNet50 ViT-B  Vim-B | OTB100 NFS LaSOT
v - - 70.1 66.9  67.6
ToMP50 - v - 658 650  66.8
- - v 68.7 65.9  66.1

We note that OSTrack has achieved great success in building a
one-stream Siamese tracking architecture of joint feature extrac-
tion and fusion. However, the one-stream discriminative tracking
method has not been developed. For this reason, we propose a
one-stream JDTrack method based on the shortcomings of the
two-stream ToMP. OSTrack uses the Siamese paradigm and a non-
updated template, while our JDTrack uses the discriminative para-
digm and a dynamic training frame and target template. As shown
in Table 4, we give the comparison results of TOMP50 and JDTrack
using ViT/Vim joint backbones. The experimental results show that
we can achieve good performance gain, especially when adopting
ViT joint backbone.

Table 4: Comparison results of two-stream ToMP50 and our
one-stream JDTrack regarding AUC or AO scores on eight
datasets.

LaSOT LaSOText GOT10k TrackingNet TNL2K OTB100 NFS UAV123
ToMP50 67.6 46.7 72.0 81.2 54.1 70.1 66.9 69.0
JDTrack-Vim | 68.2 47.3 72.8 82.8 56.0 69.7 68.3 69.7
JDTrack-ViT | 73.3 50.4 78.2 84.0 58.8 713 67.3 71.0

Updatable Template Token: Table 5 provides a comparative
experiment on whether our JDTrack-ViT tracker uses a target tem-
plate or not. Although good tracking performance can be achieved
without the target template, using the initial target template can

Xuedong He, Huiying Xu, Xinzhong Zhu, and Hongbo Li

obtain relative gains of 1.4/0.6/1.7/0.5/0.2/1.1/0.7/0.6 (%). Moreover,
the initial and dynamic template fusion method proposed in Fig-
ure 5 and Equation 12 will have a more significant effect, which is
also due to the fact that the peak value of the response map pre-
dicted by the proposed tracker can more accurately select reliable
dynamic training frames and ensure the acquisition of dynamic
target templates. Ultimately, the updated target template can better
enhance the generation of target-aware features.

Table 5: Analysis of our JDTrack-ViT without (w/0) and with
(w/) initial template/dynamic template token, and their im-
pacts on the tracking performance in terms of AUC or AO
scores.

JDTrack | LaSOT LaSOText GOT10k TrackingNet TNL2K OTB100 NFS UAV123
w/o 71.2 48.5 74.8 83.2 57.0 69.6 67.2 68.9
w/ ei 72.6 49.1 76.5 83.7 57.2 70.7 67.9 69.5
w/e;i 73.3 50.4 78.2 84.0 58.8 71.3 67.3 71.0

Flops, Parameters and Tracking Speed: Above, we have
shown that our proposed methods are feasible and effective from
substantial ablation experiments. Next, we will further elaborate
on network parameters and tracking speed in Table 6. Our methods
are improved based on ToMP50, which uses ResNet50 as the feature
backbone. The parameter of ResNet50 is 25.56M, but actual trackers
only use the network before layer3 (i.e., 8.54M), and the trainable
layer3 is 7.1 M. Our one-stream JDTrack structure is relatively con-
cise, only including the joint feature learning backbone and the
prediction head. Although the parameter count and computational
flops of JDTrack-Vim are very low, the actual tracking speed is
similar to JDTrack-ViT. However, the GPU resources required for
training are indeed much less, but the tracking performance is rela-
tively poor. Moreover, our tracker’s tracking speed may be lower
than ToMP50, but the performance gain obtained is still consider-
able. On the whole, the tracking speed on the GPU processor of
GeForce RTX 4070 achieves real-time performance.

Table 6: Flops and network parameters of ToMP50 and our
JDTrack trackers. Moreover, we also provide the average in-
ference speed of corresponding trackers in LaSOT 280 test
datasets.

Flops(G)] Parameters (M) Speed(FPS)T
ToMP50 25.71 26.11 55.7
JDTrack-Vim 6.30 24.96 37.2
JDTrack-ViT 73.10 108.83 36.8

5 Conclusion

This paper is devoted to enhancing the discriminative ability of the
recent DCF-based trackers from the perspective of a one-stream
discriminative tracking pipeline. We inventively refactor a target
model prediction and propose joint ViT and Vim backbones to in-
tegrate feature extraction and discriminative model prediction for
exploiting the one-stream discriminative framework. Moreover, we
adopt a simple and practical update mechanism for properly replac-
ing the training token with high confidence and propose a spatial
attention fusion temporal dynamic template to achieve the com-
bination of spatiotemporal template and discriminative tracking
architecture. Our methods achieve state-of-the-art performance on
eight benchmarks, showing the potential ability of our approaches.
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